Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phytochemistry ; 222: 114076, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38570005

RESUMO

The high value of fiber-type Cannabis sativa L. (hemp) due to its phytochemicals has yet to be fully recognized and leveraged. Besides cannabidiol (CBD), which is the most prevalent non-psychoactive cannabinoid, hemp contains numerous other cannabinoids with unexplored bioactivities, in addition to various compound classes. Previous works have aimed to correlate chemical profiles of C. sativa inflorescences with important parameters, mostly based on experiments under controlled conditions. However, mapping studies that explore the phytochemical diversity of hemp in a more realistic context are crucial to guide decisions at multiple levels, especially in areas where hemp cultivation was recently re-authorized, including Mediterranean countries. In this work, a powerful strategy was followed to map the phytochemical diversity of cultivated hemp in Greece, being the first study of its kind for this environment. A panel of 98 inflorescence samples, covering two harvesting years, eleven geographical regions and seven commonly used EU varieties, were studied using a combination of targeted and untargeted approaches. Quantitative results based on UPLC-PDA revealed relatively constant CBD/THC (total) ratios, while profiling by LC-HRMS effectively probed the phytochemical variability of samples, and led to the annotation of 88 metabolites, including a multitude of minor cannabinoids. Multivariate analysis substantiated a strong effect of harvesting year in sample discrimination and related biomarkers were revealed, belonging to fatty acids and flavonoids. The effect of geographical region and, especially, variety on chemical variation patterns was more intricate to interpret. The results of this work are envisioned to enhance our understanding of the real-world phytochemical complexity of C. sativa (hemp), with a view to maximized utilization of hemp for the promotion of human well-being.


Assuntos
Cannabis , Compostos Fitoquímicos , Cannabis/química , Grécia , Compostos Fitoquímicos/química , Compostos Fitoquímicos/isolamento & purificação , Canabinoides/química , Canabinoides/análise
2.
Phytochem Anal ; 35(1): 163-183, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37709551

RESUMO

INTRODUCTION: Cannabis sativa L. is attracting worldwide attention due to various health-promoting effects. Extraction solvent type is critical for the recovery of bioactive compounds from the plant, especially cannabinoids. However, the choice of solvent is varied and not adequately warranted elsewhere, causing confusion in involved fields. OBJECTIVE: The present work aimed to investigate the effect of extraction solvent on C. sativa (hemp) with regard to cannabinoid recovery and phytochemical profile of the extracts, considering most of the related solvents. METHODOLOGY: The majority of solvents reported for C. sativa (n = 14) were compared using a representative hemp pool. Quantitative results for major and minor cannabinoids were rapidly and reliably obtained using ultrahigh-performance liquid chromatography coupled with photodiode array detection (UPLC-PDA). In parallel, high-performance thin-layer chromatographic (HPTLC) fingerprinting was employed, involving less toxic mobile phase than in relevant reports. Various derivatisation schemes were applied for more comprehensive comparison of extracts. RESULTS: Differential selectivity towards cannabinoids was observed among solvents. MeOH was found particularly efficient for most cannabinoids, in addition to solvent systems such as n-Hex/EtOH 70:30 and ACN/EtOH 80:20, while EtOH was generally inferior. For tetrahydrocannabinol (THC)-type compounds, EtOAc and n-Hex/EtOAc 60:40 outperformed n-Hex, despite its use in the official EU method. Solvents that tend to extract more lipids or more polar compounds were revealed based on HPTLC results. CONCLUSION: Combining the observations from UPLC quantitation and HPTLC fingerprinting, this work allowed comprehensive evaluation of extraction solvents, in view of robust quality assessment and maximised utilisation of C. sativa.


Assuntos
Canabinoides , Cannabis , Canabinoides/análise , Cannabis/química , Solventes , Cromatografia Líquida de Alta Pressão/métodos , Compostos Fitoquímicos/análise , Extratos Vegetais/química
3.
Biomedicines ; 11(8)2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37626746

RESUMO

Oleuropein (OLE), a main constituent of olives, displays a pleiotropic beneficial dynamic in health and disease; the effects are based mainly on its antioxidant and hypolipidemic properties, and its capacity to protect the myocardium during ischemia. Furthermore, OLE activates the peroxisome proliferator-activated receptor (PPARα) in neurons and astrocytes, providing neuroprotection against noxious biological reactions that are induced following cerebral ischemia. The current study investigated the effect of OLE in the regulation of various neural plasticity indices, emphasizing the role of PPARα. For this purpose, 129/Sv wild-type (WT) and Pparα-null mice were treated with OLE for three weeks. The findings revealed that chronic treatment with OLE up-regulated the brain-derived neurotrophic factor (BDNF) and its receptor TrkB in the prefrontal cortex (PFC) of mice via activation of the ERK1/2, AKT and PKA/CREB signaling pathways. No similar effects were observed in the hippocampus. The OLE-induced effects on BDNF and TrkB appear to be mediated by PPARα, because no similar alterations were observed in the PFC of Pparα-null mice. Notably, OLE did not affect the neurotrophic factors NT3 and NT4/5 in both brain tissues. However, fenofibrate, a selective PPARα agonist, up-regulated BDNF and NT3 in the PFC of mice, whereas the drug induced NT4/5 in both brain sites tested. Interestingly, OLE provided neuroprotection in differentiated human SH-SY5Y cells against ß-amyloid and H2O2 toxicity independently from PPARα activation. In conclusion, OLE and similar drugs, acting either as PPARα agonists or via PPARα independent mechanisms, could improve synaptic function/plasticity mainly in the PFC and to a lesser extent in the hippocampus, thus beneficially affecting cognitive functions.

4.
Fitoterapia ; 170: 105648, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37562489

RESUMO

Pistacia lentiscus L. var. Chia belongs to the Anacardiaceae family, and it is cultivated only in the south part of Chios island, in Greece. Even though it is renowned for its unique resin, Chios mastic gum (CMG), the tree leaves have also been used in traditional medicine, while the annual pruning generates a large biomass of unused by-products. Thus, the aim of the present study was the detailed phytochemical investigation of P. lentiscus var. Chia leaves towards the search of antimicrobial agents. UPLC-HRMS & HRMS/MS based dereplication methods led to the detailed characterization of the aqueous leaf extract. In addition, twelve compounds were isolated and purified from the methanol extract and were identified using spectroscopic and spectrometric methods (NMR, HRMS) belonging to phenolic acids, tannins, flavonoids and terpenes, with the most interesting being 2-hydroxy-1,8-cineole ß-D-glucopyranoside which was isolated for the first time in the Anacardiaceae family. Remarkably, based on NMR data, methanol and aqueous extracts were found to be particularly rich in shikimic acid, a valuable building block for the pharmaceutical industry, for instance in the synthesis of the active ingredient of Tamiflu®, oseltamivir. Finally, extracts (EtOAc, MeOH, H2O) and major compounds i.e., shikimic acid, 2-hydroxy-1,8-cineole ß-D-glucopyranoside and myricitrin were evaluated for their antimicrobial properties. MeOH and H2O mastic leaf extracts as well as myricitrin and, particularly, 2-hydroxy-1,8-cineole ß-D-glucopyranoside showed significant selective activity against pathogenic Mucorales, but not against Aspergilli (Aspergillus nidulans, Aspergillus fumigatus), Candida albicans or bacteria (Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis).


Assuntos
Anti-Infecciosos , Pistacia , Pistacia/química , Ácido Chiquímico , Metanol , Estrutura Molecular , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Resina Mástique , Extratos Vegetais/química , Compostos Fitoquímicos/farmacologia , Eucaliptol
5.
Eur J Clin Invest ; 53(7): e13983, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36912212

RESUMO

BACKGROUND: Hydroxytyrosol reduces low-density lipoprotein oxidation, contributing to prevention of atherosclerosis progression. METHODS: In a prospective, crossover, double-blind, placebo-controlled trial, 30 chronic coronary artery syndrome (CCAS) patients were randomized to 4 capsules/day, containing 412.5 mg olive oil with 2.5 mg hydroxytyrosol (OOHT) each one or placebo for 1 month and then were crossed over to the alternate treatment (placebo or OOHT). We measured (a) perfused boundary region (PBR) of the sublingual arterial microvessels (increased PBR indicates reduced glycocalyx thickness), (b) flow-mediated dilation (FMD), (c) Coronary Flow Reserve (CFR) and markers of LV diastolic function by Doppler echocardiography, (d) pulse wave velocity (PWV), and (e) oxidative stress, inflammatory biomarkers and blood lipids at baseline and after treatment. RESULTS: Treatment with OOHT improved PBR, FMD, CFR and PWV compared to baseline (1.8 ± .3 vs. 1.7 ± .4 µm, p = .040, 3.7 ± 2.1 vs. 6.5% ± 2.3%, p < .001, 2.3 ± .4 vs. 2.5 ± .4, p = .030 and 11.1 ± 1.8 vs. 11.8 ± 2.3 m/s, p = .002) while there was no effect after placebo (p = NS). No effect of OOHT treatment was observed on blood pressure. There was a parallel improvement of E' of the mitral annulus and deceleration time of the E wave of mitral inflow after OOHT (p < .05) but not after placebo. Compared to baseline, treatment with OOHT reduced malondialdehyde, a marker of lipid peroxidation, oxidized LDL, triglycerides, PCSK9 and CRP blood levels (p < .05) in contrast to placebo. CONCLUSIONS: Hydroxytyrosol-enriched olive oil may have beneficial effects on endothelial, arterial and LV diastolic function likely by reducing oxidative and inflammatory burden in CCAS, though further studies are needed to confirm this mechanism.


Assuntos
Doença das Coronárias , Cardiopatias , Humanos , Pró-Proteína Convertase 9 , Azeite de Oliva , Análise de Onda de Pulso , Estudos Prospectivos
6.
Plants (Basel) ; 12(5)2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36903954

RESUMO

Oxidative damages are responsible for many adverse health effects and food deterioration. The use of antioxidant substances is well renowned, and as such, much emphasis is placed on their use. Since synthetic antioxidants exhibit potential adverse effects, plant-derived antioxidants are a preferable solution. Despite the myriads of plants that exist and the fact that numerous studies have been carried out so far, there are many species that have not been examined so far. Many plants under research exist in Greece. Trying to fill this research gap, the total phenolics content and antioxidant activity of seventy methanolic extracts from parts of Greek plants were evaluated. The total phenolics content was measured by the Folin-Ciocalteau assay. Their antioxidant capacity was calculated by the 2,2-Diphenyl-1-picrylhydrazyl (DPPH) scavenging test, the Rancimat method based on conductometric measurements, and the thermoanalytical method DSC (Differential Scanning Calorimetry). The tested samples were obtained from several parts of fifty-seven Greek plant species belonging to twenty-three different families. Both a remarkably high phenolic content (with gallic acid equivalents varying between 311.6 and 735.5 mg/g of extract) and radical scavenging activity (IC50 values ranged from 7.2 to 39.0 µg/mL) were found in the extract of the aerial parts of Cistus species (C. creticus subsp. creticus, C. creticus subsp. eriocephalus, C. monspeliensis, C. parviflorus and C. salviifolius), Cytinus taxa (C. hypocistis subsp. hypocistis, C. hypocistis subsp. orientalis and C. ruber), and Sarcopoterium spinosum. Furthermore, the sample of Cytinus ruber showed the highest protection factor (PF = 1.276) regarding the Rancimat method, which was similar to that of butylated hydroxytoluene (BHT) (PF = 1.320). The results indicated that these plants are rich in antioxidant compounds, potentiating their use either as food additives to enhance the antioxidant properties of food products, or protect them from oxidation, or as sources for the preparation of food supplements with antioxidant properties.

7.
Cells ; 13(1)2023 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-38201274

RESUMO

Gentiopicroside (GPS) is a leading component of several plant species from the Gentianaceae botanical family. As a compound with plenty of biological activities and a component of herbal drugs, GPS has an important role in the regulation of physiological processes in humans. The results of recently published scientific studies underline a meaningful role of this molecule as an active factor in metabolic pathways and mechanisms, which may have an influence in the treatment of different diseases, including digestive tract disorders, malignant changes, neurological disorders, microbial infections, bone formation disorders, inflammatory conditions, and others. This review aims to collect previously published reports on the biological properties of GPS as a single compound that were confirmed by in vitro and in vivo studies, and to draw attention to the newly discovered role of this bitter-tasting secoiridoid. Thanks to these properties, the research on this substance could be revisited.


Assuntos
Doenças Ósseas , Glucosídeos Iridoides , Humanos , Glucosídeos Iridoides/farmacologia , Osteogênese , Projetos de Pesquisa
8.
Pharmaceuticals (Basel) ; 15(12)2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36558964

RESUMO

Medicinal plants have long been recognized as a tremendous source of candidate compounds for the development of pharmaceuticals, including anti-viral agents. Herein, we report the identification of anti-influenza virus activity in non-polar Primula veris L. subsp. veris extracts. We show that P. veris subsp. veris flower extracts, obtained using supercritical fluid or ultrasound-based extraction, possess virucidal/virus inactivation properties and confer prophylactic and therapeutic effects against influenza virus-induced cytolysis in vitro. By GC-MS and UPLC-HRMS analysis of non-polar P. veris subsp. veris extracts we identified terpenes, flavones, tocopherols, and other classes of phytochemicals with known or putative anti-influenza properties. In silico prediction of cellular functions and molecular pathways affected by these phytochemicals suggests putative effects on signal transduction, inflammasome, and cell death pathways that are relevant to influenza virus pathogenesis. Combining P. veris subsp. veris with extracts of medicinal plants with proven anti-influenza activity such as Echinacea purpurea (L.) Moench and Cistus creticus L. subsp. creticus achieves an impressive protective effect against infection by influenza virus H1N1 in vitro and reduced progeny virus production by infected cells. Collectively, these findings uncover a previously uncharted biological property of non-polar P. veris flower extracts that warrants further studies to assess clinical efficacy.

9.
Molecules ; 27(19)2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36234713

RESUMO

The bioactive compounds present in the edible products of the olive tree have been extensively studied and their favorable effects on various disease risk factors have been demonstrated. The aim of this study was to perform a comparative analysis of the anti-leishmanial effects of total phenolic fractions (TPFs) derived from extra virgin olive oil with different phenolic contents and diverse quantitative patterns. Moreover, the present study investigated their association with miltefosine, a standard anti-leishmanial drug, against both extracellular promastigotes and intracellular amastigotes of a viscerotropic and a dermotropic Leishmania strain. The chemical compositions of TPFs were determined by high performance liquid chromatography with diode array detection (HPLC-DAD). Analysis of parasite growth kinetics, reactive oxygen species production and apoptotic events were determined by microscopy and flow cytometry. Our results revealed that the presence of oleacein (OLEA) and oleocanthal (OLEO) secoiridoids enhances the anti-leishmanial effect of TPF. The association between TPFs and miltefosine was suggested as being additive in Leishmania infantum and Leishmania major promastigotes, and as antagonistic in intracellular amastigotes, as was evaluated with the modified isobologram method. The obtained data verified that TPFs are bioactive dietary extracts with a strong anti-leishmanial activity and highlighted that fractions that are richer in OLEA and OLEO phenolic compounds possess stronger inhibitory effects against parasites. This study may contribute to improving the therapeutic approaches against leishmaniasis.


Assuntos
Antiprotozoários , Leishmania major , Aldeídos , Antiprotozoários/farmacologia , Antiprotozoários/uso terapêutico , Monoterpenos Ciclopentânicos , Iridoides/farmacologia , Azeite de Oliva/química , Fenóis , Fosforilcolina/análogos & derivados , Espécies Reativas de Oxigênio/farmacologia
10.
Planta Med ; 88(9-10): 783-793, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35803258

RESUMO

Leishmaniasis is a major tropical disease with increasing global incidence. Due to limited therapeutic options with severe drawbacks, the discovery of alternative treatments based on natural bioactive compounds is important. In our previous studies we have pointed out the antileishmanial activities of olive tree-derived molecules. In this study, we aimed to investigate the in vitro and in vivo antileishmanial as well as the in vivo immunomodulatory effects of oleocanthal, a molecule that has recently gained increasing scientific attention. Pure oleocanthal was isolated from extra virgin olive oil through extraction and chromatography techniques. The in vitro antileishmanial effects of oleocanthal were examined with a resazurin-based assay, while its in vivo efficacy was evaluated in Leishmania major-infected BALB/c mice by determining footpad induration, parasite load in popliteal lymph nodes, histopathological outcome, antibody production, cytokine profile of stimulated splenocytes and immune gene expression, at three weeks after the termination of treatment. Oleocanthal demonstrated in vitro antileishmanial effect against both L. major promastigotes and intracellular amastigotes. This effect was further documented in vivo as demonstrated by the suppressed footpad thickness, the decreased parasite load and the inflammatory cell influx at the infection site. Oleocanthal treatment led to the dominance of a Th1-type immunity linked with resistance against the disease. This study establishes strong scientific evidence for olive tree-derived natural products as possible antileishmanial agents and provides an adding value to the scientific research of oleocanthal.


Assuntos
Antiprotozoários , Leishmaniose Cutânea , Leishmaniose , Aldeídos , Animais , Antiprotozoários/farmacologia , Monoterpenos Ciclopentânicos , Imunoterapia , Leishmaniose/tratamento farmacológico , Leishmaniose/parasitologia , Leishmaniose Cutânea/tratamento farmacológico , Camundongos , Camundongos Endogâmicos BALB C , Fenóis
11.
Planta Med ; 88(9-10): 805-813, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35322394

RESUMO

Secoiridoids is the prominent chemical class of olive oil polar constituents and are characterized by significant biological properties. They are abundant in different chemical forms and relatively high concentrations compared to other components, while prone to oxidation due to their chemical motif. In recent years, oxidized derivatives of secoiridoids have been reported, either as natural constituents of olive oil or as components which are gradually formed in all stages of its production and storage. The mono-oxidized forms of oleocanthal and oleacein named as the respective acids have been recently isolated from olive oil and unambiguously structurally characterized. Other oxidized forms of elenolic acid or more complex secoiridoids, such as those of oleuropein and ligstroside aglycones are also sporadically mentioned in the literature. No further information is provided since they have not been isolated in pure form in order to be accurately identified. Most of the time, they are generally referred as oxidized forms of the parent compounds and commonly identified based on mass spectrometric data. In the current study, the semi-synthesis of the main oxidized olive oil secoiridoids, i.e., oleocanthalic acid, oleaceinic acid, EDA acid, carboxylic form of elenolic acid, carboxylic form of ligstroside aglycon, and carboxylic form of oleuropein aglycon is described starting from the corresponding aldehydic derivatives, using SeO2/H2O2 as oxidative agents. Furthermore, their presence in a number of Greek olive oils was investigated as well, as possible correlation thereof with quality parameters.


Assuntos
Peróxido de Hidrogênio , Iridoides , Ácidos Carboxílicos , Iridoides/química , Azeite de Oliva/química , Oxirredução
12.
Food Chem ; 384: 132470, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35219987

RESUMO

Oleocanthal, oleacein, oleuropein and hydroxytyrosol comprise characteristic polyphenols of olive with high biological value. However, stability problems hinder their further investigation. Thus, in the present study they were incorporated in nanoliposomes by thin film hydration method. The particles sizes, PDI, zeta-potential and physicochemical stabilities of nanoliposomes were evaluated by light scattering methods while FTIR, XRD, TGA and DSC methods were carried out for further physicochemical characterization. Their micromorphology was illustrated by negative-staining TEM and Cryo-TEM, revealing well-dispersed round-shaped vesicles. According to in vitro release studies, oleocanthal and oleacein were rapidly released in a higher percentage than oleuropein and hydroxytyrosol and compatible with the Ritger-Peppas model release mechanism while only oleuropein liposomes were governed by anomalous diffusion of non-Fickian diffusion. Antioxidant assays showed that nanoliposomes presented comparable activity with pure compounds enabling them as suitable carriers for the delivery of olive active biophenols in the human organism.


Assuntos
Glucosídeos Iridoides , Olea , Aldeídos , Monoterpenos Ciclopentânicos , Humanos , Olea/química , Fenóis , Álcool Feniletílico/análogos & derivados
13.
Biomolecules ; 13(1)2022 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-36671450

RESUMO

Olive pomace is the main by-product generated by the olive oil production process. Although toxic to the environment, olive pomace is an important source of natural antioxidants due to its high content of phenolic compounds. The aim of the current study is to maximize the extraction yields of the main phenolic compounds present in olive pomace using innovative green technologies. For this purpose, the present work is divided into two parts. The first part is based on a solubility study of targeted phenolic compounds in various ethanol/water ratios at two different temperatures (20 °C and 50 °C). A computational prediction using COSMO-RS software was applied for the calculation of eventual solubility, which was subsequently confirmed by practical experiments. The determination of the optimal extraction conditions of solvent ratio (EtOH/H2O) (60:40 v/v) and temperature (50 °C) led to the second part of the work, which concerns the intensification of extraction yields. Furthermore, various green extractions using innovative technologies, including accelerated solvent extraction (ASE), ultrasound with its both system (probe (UAE-P) and bath (UAE-B)), bead milling (BM) and microwave (MAE), were carried out and then compared to conventional maceration (CM). Results showed that ASE was the most effective method for extracting phenolic compounds from dried olive pomace powder (5.3 milligrams of tyrosol equivalent (TE) per gram of dried olive pomace powder (DOP)) compared to CM (3.8 mg TE/g DOP).


Assuntos
Olea , Pós , Fenóis , Solventes , Etanol
14.
Molecules ; 26(11)2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-34063887

RESUMO

The present work describes the use of Centrifugal Partition Chromatography (CPC) for the bio-guided isolation of repellent active volatile compounds from essential oils. Five essential oils (EOs) obtained from three Pinus and two Juniperus species were initially analyzed by gas chromatography-mass spectrometry (GC/MS) and evaluated for their repellent properties against Aedes albopictus. The essential oil from needles of P. pinea (PPI) presented the higher activity, showing 82.4% repellency at a dose of 0.2 µL/cm2. The above EO, together with the EO from the fruits of J. oxycedrus subsp. deltoides (JOX), were further analyzed by CPC using the biphasic system n-Heptane/ACN/BuOH in ratio 1.6/1.6/0.2 (v/v/v). The analysis of PPI essential oil resulted in the recovery of (-)-limonene, guaiol and simple mixtures of (-)-limonene/ß-pheladrene, while the fractionation of JOX EO led to the recovery of ß-myrcene, germacrene-D, and mixtures of α-pinene/ß-pinene (ratio 70/30) and α-pinene/germacrene D (ratio 65/45). All isolated compounds and recovered mixtures were tested for their repellent activity. From them, (-)-limonene, guaiol, germacrene-D as well the mixtures of (-)-limonene/ß-pheladrene presented significant repellent activity (>97% repellency) against Ae. albopictus. The present methodology could be a valuable tool in the effort to develop potent mosquito repellents which are environmentally friendly.


Assuntos
Aedes/efeitos dos fármacos , Cromatografia/métodos , Repelentes de Insetos/isolamento & purificação , Animais , Bioensaio , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Repelentes de Insetos/administração & dosagem , Repelentes de Insetos/farmacologia , Juniperus/química , Óleos Voláteis/química , Pinus/química , Volatilização
15.
Anal Chim Acta ; 1150: 338200, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33583544

RESUMO

Cannabidiol (CBD) and cannabidiolic acid (CBDA) represent the most abundant non-psychoactive cannabinoids in fiber-type Cannabis sativa L. (hemp) and both have demonstrated high therapeutic potential. Hence, efficient extraction coupled with reliable determination of these compounds is crucial for informed utilization of hemp and is increasingly needed in the present state of harmonization efforts. In this context, a systematic approach for extraction optimization was followed, which initially involved comparison of three widely available extraction techniques, i.e. ultrasound-assisted extraction (UAE), microwave-assisted extraction (MAE), and dynamic maceration (DM). These were applied on samples of different hemp varieties (n = 3) using ethanol as a safe and efficient solvent. UAE showed the most promising results and was further optimized by means of response surface methodology (RSM), based on a circumscribed central composite design. The conditions maximizing CBD, CBDA, and total CBD content as well as extraction yield were determined with high desirability (0.97) and were experimentally confirmed. The optimized UAE method was also compared with a previously reported extraction procedure, demonstrating superior performance. For the quantitation of CBD and CBDA in hemp extracts, a reversed-phase UPLC-PDA method was developed and validated. Chromatographic separation was achieved in less than 10 min, while satisfactory results for linearity (R2 > 0.996), precision (RSD < 2.0%), and accuracy (recovery rates of 93.1-101.0%) were obtained for both analytes. Limits of detection were determined as 0.07 and 0.04 µg mL-1 for CBD and CBDA, respectively, indicating sufficient sensitivity. The good performance of the method was verified by the evaluation of additional parameters (e.g. matrix effect, extraction recovery), which was largely enabled by the use of isolated standards. The whole analytical workflow, involving both optimized UAE extraction and UPLC-PDA determination, entails simplified manipulation and may offer a reliable and cost-effective approach for routine quality control of hemp regarding the principal cannabinoids.


Assuntos
Canabidiol , Canabinoides , Cannabis , Canabidiol/análise , Canabinoides/análise , Cromatografia Líquida de Alta Pressão , Extratos Vegetais
16.
Planta ; 253(3): 70, 2021 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-33604730

RESUMO

MAIN CONCLUSION: The quantitative profile of the biochemicals secreted by summer and winter leaves, present noticeable differences and appear to be qualitatively different from the biochemical profile of the commercially valuable mastic. The anatomy of the root and the primary and secondary shoot as well as that of the summer and winter leaves of P. lentiscus was thoroughly investigated. The secreting network was tracked throughout the plant axis, from the root to the leaves, and the active secreting cells of the duct epithelium were localized, while the secondary metabolites produced within the cells of the summer and winter leaf tissues were identified histochemically. Numerous phytochemicals were identified in the leaf extracts with UHPLC-qTOF MS analysis. The analyzed extracts from summer and winter leaves displayed similar qualitative profile, although quantitative differences were evident, since, during the summer, the leaves tend to synthesize the more complex amongst the identified compounds. The phytochemical profile of the leaf extracts turns to be completely different compared to that of the valuable mastic harvested from the injured trunks. Many of the compounds common in mastic were not detected in the analyzed leaves samples. The numerous secreting ducts either fail to form a unified network, so composition of the secreted material varies in the different organs of the plant or they compose a continuous network, but the biochemical profile of the secreted material differs along the plant axis. Such a detailed investigation of the secretion network of the mastic tree may assist the improvement of the yield and promote the production of valuable phytochemicals through in vitro cultures.


Assuntos
Pistacia , Resina Mástique , Compostos Fitoquímicos , Extratos Vegetais
17.
PLoS Negl Trop Dis ; 15(1): e0008968, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33428610

RESUMO

BACKGROUND: Leishmaniasis is a serious multifactorial parasitic disease with limited treatment options. Current chemotherapy is mainly consisted of drugs with serious drawbacks such as toxicity, variable efficacy and resistance. Alternative bioactive phytocompounds may provide a promising source for discovering new anti-leishmanial drugs. Extra Virgin Olive Oil (EVOO), a key-product in the Mediterranean diet, is rich in phenols which are associated with anti-inflammatory, anti-cancer and anti-microbial effects. In this study, we investigate the anti-leishmanial effect of Total Phenolic Fraction (TPF) derived from EVOO in both in vitro and in vivo systems by investigating the contributing mechanism of action. METHODOLOGY/PRINCIPAL FINDINGS: We tested the ability of TPF to cause apoptotic-like programmed cell death in L. infantum and L. major exponential-phase promastigotes by evaluating several apoptotic indices, such as reduction of proliferation rate, sub-G0/G1 phase cell cycle arrest, phosphatidylserine externalization, mitochondrial transmembrane potential disruption and increased ROS production, by using flow cytometry and microscopy techniques. Moreover, we assessed the therapeutic effect of TPF in L. major-infected BALB/c mice by determining skin lesions, parasite burden in popliteal lymph nodes, Leishmania-specific antibodies and biomarkers of tissue site cellular immune response, five weeks post-treatment termination. Our results show that TPF triggers cell-cycle arrest and apoptotic-like changes in Leishmania spp. promastigotes. Moreover, TPF treatment induces significant reduction of parasite burden in draining lymph nodes together with an antibody profile indicative of the polarization of Th1/Th2 immune balance towards the protective Th1-type response, characterized by the presence of IFN-γ-producing CD4+ T-cells and increased Tbx21/GATA-3 gene expression ratio in splenocytes. CONCLUSIONS/SIGNIFICANCE: TPF exhibits chemotherapeutic anti-leishmanial activity by inducing programmed cell death on cell-free promastigotes and immunomodulatory properties that induce in vivo T cell-mediated responses towards the protective Th1 response in experimental cutaneous leishmaniasis. These findings enable deeper understanding of TPF's dual mode of action that encourages further studies.


Assuntos
Morte Celular/efeitos dos fármacos , Imunomodulação , Leishmania/efeitos dos fármacos , Leishmaniose Cutânea/tratamento farmacológico , Azeite de Oliva/farmacologia , Fenóis/farmacologia , Animais , Anticorpos , Ciclo Celular , Citocinas , Dieta Mediterrânea , Feminino , Expressão Gênica , Imunoglobulina G , Concentração Inibidora 50 , Cinética , Leishmania/fisiologia , Macrófagos/imunologia , Camundongos Endogâmicos BALB C , Mitocôndrias/metabolismo , Células Th1 , Células Th2
18.
Antioxidants (Basel) ; 11(1)2021 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-35052605

RESUMO

Cymbidium is one of the most popular genera in Orchidaceae family, commercialized either as loose flowers or as potted plants in floriculture worldwide. The non-marketable parts are typically discarded (e.g., unsuitable flowers, leaves, pseudobulbs, roots), generating an enormous quantity of unutilized biomass. The above by-products were studied through phytochemical analysis and investigated for their dermo-cosmetic potential. The initial antioxidant, anti-tyrosinase, anti-elastase, and anti-collagenase assays of the total extracts indicated that the pseudobulb and root ethyl acetate extracts were the most potent. Those extracts were then submitted to chromatographic separation leading to the isolation of 16 secondary metabolites (four phenanthrenes, three 1,4-phenanthrenquinones, three dibenzyls, two phenolic acid derivatives, two sterols, one dehydrodiconiferyl alcohol derivative, and one simple phenolic compound), including 6-hydroxy-5,7-dimethoxy-1,4-phenanthrenequinone (cymbisamoquinone), which was identified as a new natural product. In parallel, 48 metabolites were identified by UPLC-HRMS analysis of the extracts. The biological evaluation of the isolated compounds revealed that gigantol and tristin present important anti-tyrosinase activity, while bulbophyllanthrin, 3-hydroxy-2,4,7-trimethoxy-phenanthrene, marylaurencinol A, 5-hydroxy-2-methoxy-1,4-phenanthrenequinone, and ephemeranthroquinone B show dose-dependent anti-collagenase activity. In contrast to isolated metabolites, which may act selectively on specific enzymes, the initial total extracts exhibited inhibitory activity against tyrosinase, elastase, and collagenase enzymes, thus showing better prospects for use in dermo-cosmetic formulations.

19.
Neuroscience ; 454: 105-115, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-32950556

RESUMO

Cannabidiol (CBD) is a non-addictive ingredient of cannabis with antipsychotic potential, while ketamine (KET), an uncompetitive NMDA receptor inhibitor, has been extensively used as a psychotomimetic. Only few studies have focused on the role of CBD on the KET-induced motor profile, while no study has investigated the impact of CBD on KET-induced alterations in NMDA receptor subunit expression and ERK phosphorylation state, in brain regions related to the neurobiology and treatment of schizophrenia. Therefore, the aim of the present study is to evaluate the role of CBD on KET-induced motor response and relevant glutamatergic signaling in the prefrontal cortex, the nucleus accumbens, the dorsal and ventral hippocampus. The present study demonstrated that CBD pre-administration did not reverse KET-induced short-lasting hyperactivity, but it prolonged it over time. CBD alone decreased motor activity at the highest dose tested (30 mg/kg) while KET increased motor activity at the higher doses (30, 60 mg/kg). Moreover, KET induced regionally-dependent alterations in NR1 and NR2B expression and ERK phosphorylation that were reversed by CBD pre-administration. Interestingly, in the nucleus accumbens KET per se reduced NR2B and p-ERK levels, while the CBD/KET combination increased NR2B and p-ERK levels, as compared to control. This study is the first to show that CBD prolongs KET-induced motor stimulation and restores KET-induced effects on glutamatergic signaling and neuroplasticity-related markers. These findings contribute to the understanding of CBD effects on the behavioral and neurobiological profiles of psychotogenic KET.


Assuntos
Antipsicóticos , Canabidiol , Ketamina , Esquizofrenia , Antipsicóticos/uso terapêutico , Canabidiol/farmacologia , Humanos , Ketamina/farmacologia , Receptores de N-Metil-D-Aspartato , Esquizofrenia/tratamento farmacológico
20.
Food Chem ; 343: 128400, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33131954

RESUMO

The present study describes the peculiar phytochemical characteristics of bergamots cultivated in distinct islands of the Ionian Sea. Ultrahigh-performance liquid chromatography high-resolution mass spectrometry (UHPLC-HRMS) supported by 1 and 2D NMR spectroscopy was used for unambiguous metabolic profiling of albedo, flavedo and juice samples. Profile differences were determined using a multi-analytical clustering approach based on high-performance thin-layer chromatography fingerprints and UHPLC-HRMS data. Finally, a validated HPLC method offering good precision (0.12-0.94%) and accuracy (95.25-103.93%) was proposed for the quantification of the major flavanones. A total of 37 secondary metabolites were characterized belonging to flavonoids, limonoids and coumarins. Their distribution was tissue-dependent and varied significantly from bergamots of other geographical locations. Surprisingly, neoeriocitrin was the major flavanone, reaching 1.69 ± 0.05 g/L in the juice and 5.24 ± 0.12 mg/g in albedo. This is the highest reported amount among Citrus species, rendering Ionian bergamots a promising candidate for novel functional products.


Assuntos
Citrus/química , Compostos Fitoquímicos/análise , Cromatografia Líquida de Alta Pressão , Cromatografia em Camada Fina , Citrus/metabolismo , Análise por Conglomerados , Dissacarídeos/análise , Flavanonas/análise , Flavanonas/química , Frutas/química , Frutas/metabolismo , Grécia , Ilhas , Espectrometria de Massas , Compostos Fitoquímicos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...